Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 166
Filter
1.
Viruses ; 16(2)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38400061

ABSTRACT

Tick-borne encephalitis is a vaccine-preventable disease of concern for public health in large parts of Europe, with EU notification rates increasing since 2018. It is caused by the orthoflavivirus tick-borne encephalitis virus (TBEV) and a diagnosis of infection is mainly based on serology due to its short viremic phase, often before symptom onset. The interpretation of TBEV serology is hampered by a history of orthoflavivirus vaccination and by previous infections with related orthoflaviviruses. Here, we sought to improve TBEV sero-diagnostics using an antigen combination of in-house expressed NS1 and EDIII in a multiplex, low-specimen-volume set-up for the detection of immune responses to TBEV and other clinically important orthoflaviviruses (i.e., West Nile virus, dengue virus, Japanese encephalitis virus, Usutu virus and Zika virus). We show that the combined use of NS1 and EDIII results in both a specific and sensitive test for the detection of TBEV IgG for patient diagnostics, vaccination responses and in seroprevalence studies. This novel approach potentially allows for a low volume-based, simultaneous analysis of IgG responses to a range of orthoflaviviruses with overlapping geographic circulations and clinical manifestations.


Subject(s)
Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , Encephalitis, Viral , Flavivirus Infections , Zika Virus Infection , Zika Virus , Humans , Protein Domains , Seroepidemiologic Studies , Antibodies, Viral , Flavivirus Infections/diagnosis , Immunoglobulin G
2.
Emerg Microbes Infect ; 13(1): 2301666, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38163752

ABSTRACT

In the past few decades, several emerging/re-emerging mosquito-borne flaviviruses have resulted in disease outbreaks of public health concern in the tropics and subtropics. Due to cross-reactivities of antibodies recognizing the envelope protein of different flaviviruses, serosurveillance remains a challenge. Previously we reported that anti-premembrane (prM) antibody can discriminate between three flavivirus infections by Western blot analysis. In this study, we aimed to develop a serological assay that can discriminate infection or exposure with flaviviruses from four serocomplexes, including dengue (DENV), Zika (ZIKV), West Nile (WNV) and yellow fever (YFV) viruses, and explore its application for serosurveillance in flavivirus-endemic countries. We employed Western blot analysis including antigens of six flaviviruses (DENV1, 2 and 4, WNV, ZIKV and YFV) from four serocomplexes. We tested serum samples from YF-17D vaccinees, and from DENV, ZIKV and WNV panels that had been confirmed by RT-PCR or by neutralization assays. The overall sensitivity/specificity of anti-prM antibodies for DENV, ZIKV, WNV, and YFV infections/exposure were 91.7%/96.4%, 91.7%/99.2%, 88.9%/98.3%, and 91.3%/92.5%, respectively. When testing 48 samples from Brazil, we identified multiple flavivirus infections/exposure including DENV and ZIKV, DENV and YFV, and DENV, ZIKV and YFV. When testing 50 samples from the Philippines, we detected DENV, ZIKV, and DENV and ZIKV infections with a ZIKV seroprevalence rate of 10%, which was consistent with reports of low-level circulation of ZIKV in Asia. Together, these findings suggest that anti-prM antibody is a flavivirus serocomplex-specific marker and can be employed to delineate four flavivirus infections/exposure in regions where multiple flaviviruses co-circulate.


Subject(s)
Dengue Virus , Dengue , Flavivirus Infections , Flavivirus , Zika Virus Infection , Zika Virus , Animals , Flavivirus/genetics , Zika Virus Infection/diagnosis , Zika Virus Infection/epidemiology , Zika Virus/genetics , Dengue Virus/genetics , Seroepidemiologic Studies , Antibodies, Viral , Flavivirus Infections/diagnosis , Flavivirus Infections/epidemiology , Yellow fever virus , Cross Reactions
3.
J Virol ; 97(11): e0149723, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37877719

ABSTRACT

IMPORTANCE: Duck Tembusu virus (DTMUV) is an emerging pathogenic flavivirus that replicates well in mosquito, bird, and mammalian cells. An in vivo study revealed that BALB/c mice and Kunming mice were susceptible to DTMUV after intracerebral inoculation. Moreover, there are no reports about DTMUV-related human disease, but antibodies against DTMUV and viral RNA were detected in the serum samples of duck industry workers. This information implies that DTMUV has expanded its host range and poses a threat to mammalian health. Thus, understanding the pathogenic mechanism of DTMUV is crucial for identifying potential antiviral targets. In this study, we discovered that NS3 can induce the mitochondria-mediated apoptotic pathway through the PERK/PKR pathway; it can also interact with voltage-dependent anion channel 2 to induce apoptosis. Our findings provide a theoretical basis for understanding the pathogenic mechanism of DTMUV infection and identifying potential antiviral targets and may also serve as a reference for exploring the pathogenesis of other flaviviruses.


Subject(s)
Apoptosis , Ducks , Flavivirus Infections , Flavivirus , Host Specificity , Animals , Humans , Antiviral Agents/pharmacology , Ducks/virology , eIF-2 Kinase/metabolism , Flavivirus/enzymology , Flavivirus/pathogenicity , Flavivirus Infections/diagnosis , Flavivirus Infections/immunology , Flavivirus Infections/transmission , Flavivirus Infections/virology , Mitochondria/metabolism , Molecular Targeted Therapy/trends , Viral Zoonoses/diagnosis , Viral Zoonoses/immunology , Viral Zoonoses/transmission , Viral Zoonoses/virology , Voltage-Dependent Anion Channel 2/metabolism
4.
Euro Surveill ; 28(33)2023 08.
Article in English | MEDLINE | ID: mdl-37589592

ABSTRACT

BackgroundUsutu virus (USUV) is a flavivirus with an enzootic cycle between birds and mosquitoes; humans are incidental dead-end hosts. In Europe, the virus was first detected in Italy in 1996; since then, it has spread to many European countries.AimWe aimed to report on the epidemiology, surveillance, diagnosis and prevention of USUV infection in humans, mosquitoes and other animals in the European Union/European Economic Area (EU/EEA) from 2012 to 2021.MethodsWe collected information through a literature review, an online survey and an expert meeting.ResultsEight countries reported USUV infection in humans (105 cases, including 12 [corrected] with neurological symptoms), 15 countries in birds and seven in mosquitoes. Infected animals were also found among pets, wild and zoo animals. Usutu virus was detected primarily in Culex pipiens but also in six other mosquito species. Detection of USUV infection in humans is notifiable only in Italy, where it is under surveillance since 2017 and now integrated with surveillance in animals in a One Health approach. Several countries include USUV infection in the differential diagnosis of viral encephalitis and arbovirus infections. Animal USUV infection is not notifiable in any EU/EEA country.ConclusionHuman USUV infections, mainly asymptomatic and, less frequently, with a febrile illness or a neuroinvasive disease, have been reported in several EU/EEA countries, where the virus is endemic. Climate and environmental changes are expected to affect the epidemiology of USUV. A One Health approach could improve the monitoring of its evolution in Europe.


Subject(s)
Culicidae , Flavivirus Infections , Flavivirus , Animals , Humans , Diagnosis, Differential , Encephalitis, Viral , Europe/epidemiology , Flavivirus Infections/diagnosis , Flavivirus Infections/epidemiology , Public Health Surveillance
5.
Viruses ; 15(2)2023 02 19.
Article in English | MEDLINE | ID: mdl-36851784

ABSTRACT

Nonstructural protein 1 (NS1) is a glycoprotein among the flavivirus genus. It is found in both membrane-associated and soluble secreted forms, has an essential role in viral replication, and modulates the host immune response. NS1 is secreted from infected cells within hours after viral infection, and thus immunodetection of NS1 can be used for early serum diagnosis of dengue fever infections instead of real-time (RT)-PCR. This method is fast, simple, and affordable, and its availability could provide an easy point-of-care testing solution for developing countries. Early studies show that detecting NS1 in cerebrospinal fluid (CSF) samples is possible and can improve the surveillance of patients with dengue-associated neurological diseases. NS1 can be detected postmortem in tissue specimens. It can also be identified using noninvasive methods in urine, saliva, and dried blood spots, extending the availability and effective detection period. Recently, an enzyme-linked immunosorbent assay (ELISA) assay for detecting antibodies directed against Zika virus NS1 has been developed and used for diagnosing Zika infection. This NS1-based assay was significantly more specific than envelope protein-based assays, suggesting that similar assays might be more specific for other flaviviruses as well. This review summarizes the knowledge on flaviviruses' NS1's potential role in antigen and antibody diagnosis.


Subject(s)
Flavivirus Infections , Zika Virus Infection , Zika Virus , Humans , Antibodies , Autopsy , Biological Assay , Flavivirus Infections/diagnosis , Zika Virus Infection/diagnosis
6.
J Vet Intern Med ; 36(6): 1858-1871, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36367340

ABSTRACT

Horses and other equids can be infected with several viruses of the family Flaviviridae, belonging to the genus Flavivirus and Hepacivirus. This consensus statement focuses on viruses with known occurrence in Europe, with the objective to summarize the current literature and formulate clinically relevant evidence-based recommendations regarding clinical disease, diagnosis, treatment, and prevention. The viruses circulating in Europe include West Nile virus, tick-borne encephalitis virus, Usutu virus, Louping ill virus and the equine hepacivirus. West Nile virus and Usutu virus are mosquito-borne, while tick-borne encephalitis virus and Louping ill virus are tick-borne. The natural route of transmission for equine hepacivirus remains speculative. West Nile virus and tick-borne encephalitis virus can induce encephalitis in infected horses. In the British Isle, rare equine cases of encephalitis associated with Louping ill virus are reported. In contrast, equine hepacivirus infections are associated with mild acute hepatitis and possibly chronic hepatitis. Diagnosis of flavivirus infections is made primarily by serology, although cross-reactivity occurs. Virus neutralization testing is considered the gold standard to differentiate between flavivirus infections in horses. Hepacivirus infection is detected by serum or liver RT-PCR. No direct antiviral treatment against flavi- or hepacivirus infections in horses is currently available and thus, treatment is supportive. Three vaccines against West Nile virus are licensed in the European Union. Geographic expansion of flaviviruses pathogenic for equids should always be considered a realistic threat, and it would be beneficial if their detection was included in surveillance programs.


Subject(s)
Encephalitis Viruses, Tick-Borne , Encephalitis , Flaviviridae Infections , Flavivirus Infections , Horse Diseases , West Nile virus , Horses , Animals , Flavivirus Infections/diagnosis , Flavivirus Infections/epidemiology , Flavivirus Infections/prevention & control , Flavivirus Infections/veterinary , Flaviviridae Infections/veterinary , Europe/epidemiology , Encephalitis/veterinary , Horse Diseases/diagnosis , Horse Diseases/epidemiology , Horse Diseases/prevention & control
7.
Microbiol Spectr ; 10(3): e0059222, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35532242

ABSTRACT

Flaviviruses are important human pathogens worldwide. Diagnostic testing for these viruses is difficult because many of the pathogens require specialized biocontainment. To address this issue, we generated 39 virus-like particle (VLP)- and nonstructural protein 1 (NS1)-secreting stable cell lines in HEK-293 cells of 13 different flaviviruses, including dengue, yellow fever, Japanese encephalitis, West Nile, St. Louis encephalitis, Zika, Rocio, Ilheus, Usutu, and Powassan viruses. Antigen secretion was stable for at least 10 cell passages, as measured by enzyme-linked immunosorbent assays and immunofluorescence assays. Thirty-five cell lines (90%) had stable antigen expression over 10 passages, with three of these cell lines (7%) increasing in antigen expression and one cell line (3%) decreasing in antigen expression. Antigen secretion in the HEK-293 cell lines was higher than in previously developed COS-1 cell line counterparts. These antigens can replace current antigens derived from live or inactivated virus for safer use in diagnostic testing. IMPORTANCE Serological diagnostic testing for flaviviral infections is hindered by the need for specialized biocontainment for preparation of reagents and assay implementation. The use of previously developed COS-1 cell lines secreting noninfectious recombinant viral antigen is limited due to diminished antigen secretion over time. Here, we describe the generation of 39 flaviviral virus-like particle (VLP)- and nonstructural protein 1 (NS1)-secreting stable cell lines in HEK-293 cells representing 13 medically important flaviviruses. Antigen production was more stable and statistically higher in these newly developed cell lines than in their COS-1 cell line counterparts. The use of these cell lines for production of flaviviral antigens will expand serological diagnostic testing of flaviviruses worldwide.


Subject(s)
Flavivirus Infections , Flavivirus , Zika Virus Infection , Zika Virus , Antibodies, Viral , Antigens, Viral , Flavivirus Infections/diagnosis , HEK293 Cells , Humans , Zika Virus/genetics
8.
Front Cell Infect Microbiol ; 12: 848365, 2022.
Article in English | MEDLINE | ID: mdl-35252043

ABSTRACT

Duck tembusu virus (DTMUV), which causes huge economic losses for the poultry industries in Southeast Asia and China, was first identified in 2010. DTMUV disease has become an important disease that endangers the duck industry. A sensitive, accurate, and convenient DTMUV detection method is an important means to reduce the occurrence of the disease. In this study, a CRISPR/Cas13a system was combined with recombinase polymerase amplification to develop a convenient diagnostic method to detect DTMUV. The novel method was based on isothermal detection at 37°C, and the detection was used for visual readout or real-time analysis. The assay was highly sensitive and specific, with a detection limit of 1 copy/µL of the target gene and showed no cross-reactivity with other pathogens. The enhanced Cas13a detection worked well with clinical samples. Overall, a visual, sensitive, and specific nucleic acid detection method based on CRISPR/Cas13a proved to be a powerful tool for detecting DTMUV.


Subject(s)
Flavivirus Infections , Poultry Diseases , Animals , CRISPR-Cas Systems , Flavivirus , Flavivirus Infections/diagnosis , Flavivirus Infections/veterinary , Point-of-Care Systems , Poultry Diseases/diagnosis , Sensitivity and Specificity
9.
Transbound Emerg Dis ; 69(5): e1693-e1701, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35255189

ABSTRACT

Currently, duck Tembusu virus (DTMUV), an emerging avian pathogenic flavivirus, is widely spread and becomes endemic in duck populations in Asia, causing significant economic losses in the duck producing industry. To early detection and control of DTMUV, the well-validated diagnostic tests for efficient detection of DTMUV infection in ducks are needed. In this study, we validated and compared hemagglutination inhibition (HI) and indirect immunofluorescence (IFA) tests for identifying antibodies against DTMUV in duck serum samples. Our results demonstrated that HI and IFA tests can both be used to detect antibodies against DTMUV in duck serum samples with high sensitivity (100%), specificity (>87%) and overall agreement with the gold standard serum neutralization (SN) test (>90%). Additionally, DTMUV-specific antibody titres determined by HI and IFA tests correlated well with the neutralizing antibody titres obtained by SN test. No cross-reactivity against common duck viruses and other flaviviruses was observed in both tests. It is interesting to note that HI test had higher diagnostic specificity and exhibited a stronger positive correlation with SN test than IFA test. Evaluating the performance of HI and IFA tests with experimental and field serum samples revealed that both tests showed comparable performance with SN test in terms of antibody kinetic and detection rate. Collectively, these findings support the use of both tests, particularly HI test, as the alternative to SN test for measuring the antibody responses against DTMUV in ducks. These tests could be the suitable choices for DTMUV diagnosis, epidemiological study and vaccine efficacy evaluation.


Subject(s)
Flavivirus Infections , Flavivirus , Poultry Diseases , Animals , Antibodies, Neutralizing , Antibodies, Viral , Ducks , Flavivirus Infections/diagnosis , Flavivirus Infections/veterinary , Fluorescent Antibody Technique, Indirect/veterinary , Hemagglutination , Poultry Diseases/prevention & control
10.
Transbound Emerg Dis ; 69(5): 2779-2787, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34919790

ABSTRACT

West Nile virus (WNV) and Usutu virus (USUV) are mosquito-borne viruses that belong to the Japanese encephalitis virus serocomplex within the genus Flavivirus. Due to climate change and the expansion of mosquito vectors, flaviviruses are becoming endemic in increasing numbers of countries. WNV infections are reported with symptoms ranging from mild fever to severe neuro-invasive disease. Until now, only a few USUV infections have been reported in humans, mostly with mild symptoms. The serological diagnosis and differentiation between flavivirus infections, in general, and between WNV and USUV, in particular, are challenging due to the high degree of cross-reacting antibodies, especially of those directed against the conserved fusion loop (FL) domain of the envelope (E) protein. We have previously shown that E proteins containing four amino-acid mutations in and near the FL strongly reduce the binding of cross-reactive antibodies leading to diagnostic technologies with improved specificities. Here, we expanded the technology to USUV and analyzed the differentiation of USUV- and WNV-induced antibodies in humans. IgG ELISAs modified by an additional competition step with the heterologous antigen resulted in overall specificities of 93.94% for WNV Equad and 92.75% for USUV Equad. IgM antibodies against WNV could be differentiated from USUV IgM in a direct comparison using both antigens. The data indicate the potential of the system to diagnose antigenically closely related flavivirus infections.


Subject(s)
Flavivirus Infections , Flavivirus , West Nile Fever , West Nile virus , Animals , Antibodies, Viral , Antigens, Heterophile , Epitopes , Flavivirus/genetics , Flavivirus Infections/diagnosis , Flavivirus Infections/epidemiology , Flavivirus Infections/veterinary , Humans , Immunoglobulin G , Immunoglobulin M , West Nile Fever/diagnosis , West Nile Fever/epidemiology , West Nile Fever/veterinary , West Nile virus/genetics
11.
Sci Rep ; 11(1): 19031, 2021 09 24.
Article in English | MEDLINE | ID: mdl-34561471

ABSTRACT

Nucleic acid test (NAT), most typically quantitative PCR, is one of the standard methods for species specific flavivirus diagnosis. Semi-comprehensive NATs such as pan-flavivirus PCR which covers genus Flavivirus are also available; however, further specification by sequencing is required for species level differentiation. In this study, a semi-comprehensive detection system that allows species differentiation of flaviviruses was developed by integration of the pan-flavivirus PCR and Nanopore sequencing. In addition, a multiplexing method was established by adding index sequences through the PCR with a streamlined bioinformatics pipeline. This enables defining cut-off values for observed read counts. In the laboratory setting, this approach allowed the detection of up to nine different flaviviruses. Using clinical samples collected in Vietnam and Brazil, seven different flaviviruses were also detected. When compared to a commercial NAT, the sensitivity and specificity of our system were 66.7% and 95.4%, respectively. Conversely, when compared to our system, the sensitivity and specificity of the commercial NAT were 57.1% and 96.9%, respectively. In addition, Nanopore sequencing detected more positive samples (n = 8) compared to the commercial NAT (n = 6). Collectively, our study has established a semi-comprehensive sequencing-based diagnostic system for the detection of flaviviruses at extremely affordable costs, considerable sensitivity, and only requires simple experimental methods.


Subject(s)
Flavivirus Infections/diagnosis , Flavivirus Infections/virology , Flavivirus/isolation & purification , Nanopore Sequencing/methods , Brazil , Computational Biology/methods , Flavivirus/genetics , Humans , Polymerase Chain Reaction/methods , Sensitivity and Specificity , Vietnam
12.
Viruses ; 13(4)2021 04 06.
Article in English | MEDLINE | ID: mdl-33917545

ABSTRACT

Monitoring infectious diseases is a crucial part of preventive veterinary medicine in zoological collections. This zoo environment contains a great variety of animal species that are in contact with wildlife species as a potential source of infectious diseases. Wild birds may be a source of West Nile virus (WNV) and Usutu (USUV) virus, which are both emerging pathogens of rising concern. The aim of this study was to use zoo animals as sentinels for the early detection of WNV and USUV in Slovenia. In total, 501 sera from 261 animals of 84 animal species (including birds, rodents, lagomorphs, carnivores, ungulates, reptiles, equids, and primates) collected for 17 years (2002-2018) were tested for antibodies to WNV and USUV. Antibodies to WNV were detected by indirect immunofluorescence tests in 16 (6.1%) of 261 animals representing 10 species, which were sampled prior to the first active cases of WNV described in 2018 in Slovenia in humans, a horse, and a hooded crow (Corvus cornix). Antibodies to USUV were detected in 14 out of 261 animals tested (5.4%) that were positive prior to the first positive cases of USUV infection in common blackbirds (Turdus merula) in Slovenia. The study illustrates the value of zoological collections as a predictor of future emerging diseases.


Subject(s)
Animals, Zoo/virology , Antibodies, Viral/blood , Flavivirus Infections/diagnosis , Flavivirus/immunology , West Nile Fever/diagnosis , West Nile virus/immunology , Animals , Animals, Zoo/classification , Antibodies, Neutralizing/blood , Female , Flavivirus Infections/blood , Flavivirus Infections/epidemiology , Flavivirus Infections/immunology , Male , Slovenia/epidemiology , West Nile Fever/blood , West Nile Fever/epidemiology , West Nile Fever/immunology
13.
Viruses ; 13(4)2021 03 31.
Article in English | MEDLINE | ID: mdl-33807442

ABSTRACT

Flaviviruses circulate worldwide and cause a number of medically relevant human diseases, such as dengue, Zika, yellow fever, and tick-borne encephalitis (TBE). Serology plays an important role in the diagnosis of flavivirus infections, but can be impeded by antigenic cross-reactivities among flaviviruses. Therefore, serological diagnosis of a recent infection can be insufficiently specific, especially in areas where flaviviruses co-circulate and/or vaccination coverage against certain flaviviruses is high. In this study, we developed a new IgM assay format, which is well suited for the specific diagnosis of TBE, Zika and dengue virus infections. In the case of TBE and Zika, the IgM response proved to be highly specific for the infecting virus. In contrast, primary dengue virus infections induced substantial amounts of cross-reactive IgM antibodies, which is most likely explained by structural peculiarities of dengue virus particles. Despite the presence of cross-reactive IgM, the standardized nature and the quantitative read-out of the assay even allowed the serotype-specific diagnosis of recent dengue virus infections in most instances.


Subject(s)
Antibodies, Viral/blood , Antigens, Viral/immunology , Cross Reactions/immunology , Flavivirus Infections/diagnosis , Flavivirus/immunology , Immunoglobulin M/blood , Serologic Tests/methods , Antigens, Viral/classification , Cohort Studies , Dengue/blood , Dengue/diagnosis , Dengue/immunology , Dengue Virus/immunology , Encephalitis Viruses, Tick-Borne/immunology , Encephalitis, Tick-Borne/diagnosis , Encephalitis, Tick-Borne/immunology , Flavivirus/classification , Flavivirus Infections/blood , Flavivirus Infections/virology , Humans , Serogroup , Serologic Tests/standards , Zika Virus/immunology , Zika Virus Infection/blood , Zika Virus Infection/diagnosis , Zika Virus Infection/immunology
14.
J Neuroinflammation ; 18(1): 11, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33407600

ABSTRACT

BACKGROUND: Usutu virus (USUV) is an emerging neurotropic arthropod-borne virus recently involved in massive die offs of wild birds predominantly reported in Europe. Although primarily asymptomatic or presenting mild clinical signs, humans infected by USUV can develop neuroinvasive pathologies (including encephalitis and meningoencephalitis). Similar to other flaviviruses, such as West Nile virus, USUV is capable of reaching the central nervous system. However, the neuropathogenesis of USUV is still poorly understood, and the virulence of the specific USUV lineages is currently unknown. One of the major complexities of the study of USUV pathogenesis is the presence of a great diversity of lineages circulating at the same time and in the same location. METHODS: The aim of this work was to determine the neurovirulence of isolates from the six main lineages circulating in Europe using mouse model and several neuronal cell lines (neurons, microglia, pericytes, brain endothelial cells, astrocytes, and in vitro Blood-Brain Barrier model). RESULTS: Our results indicate that all strains are neurotropic but have different virulence profiles. The Europe 2 strain, previously described as being involved in several clinical cases, induced the shortest survival time and highest mortality in vivo and appeared to be more virulent and persistent in microglial, astrocytes, and brain endothelial cells, while also inducing an atypical cytopathic effect. Moreover, an amino acid substitution (D3425E) was specifically identified in the RNA-dependent RNA polymerase domain of the NS5 protein of this lineage. CONCLUSIONS: Altogether, these data show a broad neurotropism for USUV in the central nervous system with lineage-dependent virulence. Our results will help to better understand the biological and epidemiological diversity of USUV infection.


Subject(s)
Flavivirus/physiology , Flavivirus/pathogenicity , Immunocompetence/physiology , Neurons/physiology , Neurons/virology , Animals , Animals, Newborn , Birds , Cell Line, Transformed , Chlorocebus aethiops , Flavivirus/isolation & purification , Flavivirus Infections/diagnosis , Flavivirus Infections/epidemiology , Humans , Mice , Vero Cells , Virulence/physiology
15.
Avian Dis ; 64(3): 294-299, 2020 09 01.
Article in English | MEDLINE | ID: mdl-33205167

ABSTRACT

Duck Tembusu virus (DTMUV), a mosquito-borne flavivirus, has been identified as a causative agent of an emerging disease in ducks. Since its first report in 2010, several clusters of DTMUV have increasingly been identified and caused outbreaks in many Asian countries. This highlights the need for improved and novel broad detection assays in order to detect all circulating clusters of DTMUV. In this study, a universal one-step reverse-transcription PCR (RT-PCR) assay targeting a highly conserved region of the NS5 gene was developed and validated for broad detection of all DTMUV clusters. The newly developed universal RT-PCR assay could specifically detect all clusters of DTMUV without cross-reactions with common duck viruses and other related flaviviruses. The assay was able to detect DTMUV as low as a 0.001 50% embryo lethal dose/milliliter. The performance of the assay was evaluated by using experimental and field clinical samples. The assay could successfully detect DTMUV in all experimentally DTMUV-infected samples and gave a higher DTMUV detection rate (36%) than the previously reported envelope-specific RT-PCR assay (30%) in field clinical samples. All the positive samples were confirmed DTMUV-positive by DNA sequencing. In conclusion, the newly developed universal RT-PCR assay exhibited high accuracy, specificity, and sensitivity in broad DTMUV detection, thus providing an improved screening assay for routine detection and epidemiologic surveillance of DTMUV.


Subject(s)
Ducks , Flavivirus Infections/veterinary , Flavivirus/isolation & purification , Polymerase Chain Reaction/veterinary , Poultry Diseases/diagnosis , Animals , Flavivirus Infections/diagnosis , Flavivirus Infections/virology , Polymerase Chain Reaction/methods , Poultry Diseases/virology , Thailand
16.
J Immunol Methods ; 487: 112874, 2020 12.
Article in English | MEDLINE | ID: mdl-33022219

ABSTRACT

Genus Flavivirus, which includes 53 virus species, is the leading cause of arthropod-borne diseases in humans. Diagnosis of these viral diseases is complicated by their overlapping epidemiology and clinical manifestations, and the fact that cross-reactive antibody responses are frequently elicited by individuals in response to infection. We developed a bead-based immunoassay to concomitantly profile the isotype and subclass of antibody responses (five isotypes and four subclasses) in parallel with specificity against multiple antigens. Our panel included 22 envelope (E) and non-structural 1 (NS1) proteins of different flaviviruses (Zika (ZIKV), Dengue (DENV), Yellow Fever (YFV), West Nile (WNV), Japanese Encephalitis (JEV) and Tick-Borne Encephalitis (TBEV)) and the envelope protein of Chikungunya virus (CHIKV). Using 54 samples from 40 individuals with ZIKV infection that had been pre-characterized, we identified 1) stronger ZIKV responses in individuals previously exposed to flavivirus compared to flavivirus-naïve individuals; 2) different antibody isotypes depending on the stage of infection: acute, convalescent and late convalescent; 3) cross-reactive responses; and 4) a potential CHIKV infection. The assay had a broad dynamic range (>5 logs) and has the potential to distinguish antigen-specific responses induced by ZIKV infection from cross-reactive responses. The multidimensional data provided by this high-throughput antibody-profiling platform can advance our understanding of the human immune response to flaviviruses as they expand their global reach.


Subject(s)
Antibodies, Viral/blood , Flavivirus Infections/diagnosis , Flavivirus/immunology , High-Throughput Screening Assays , Immunoglobulins/blood , Serologic Tests , Antibodies, Viral/immunology , Antibody Specificity , Biomarkers/blood , Cross Reactions , Diagnosis, Differential , Flavivirus Infections/blood , Flavivirus Infections/immunology , Flavivirus Infections/virology , Immunoglobulins/immunology , Predictive Value of Tests , Reproducibility of Results
17.
Virology ; 551: 46-57, 2020 12.
Article in English | MEDLINE | ID: mdl-33011522

ABSTRACT

The mosquito-borne flavivirus Usutu virus (USUV) has recently emerged in birds and humans in Europe. Symptoms of a USUV infection resemble those of West Nile virus (WNV); further, the close antigenic relationship of domain III (DIII) of the USUV and WNV envelope (E) proteins has prevented the development of a reliable serological test to distinguish USUV from WNV. To begin to address this deficiency, we identified ten different sequence groups of DIII from 253 complete and 80 partial USUV genome sequences. We solved the DIII structures of four groups, including that of the outlying CAR-1969 strain, which shows an atypical DIII structure. Structural comparisons of the USUV DIII groups and the DIII of WNV bound to the neutralizing antibody E16 revealed why the E16 failed to neutralize all USUV strains tested except for USUV CAR-1969. The analyses allowed predictions to be made to engineer an antibody specific for USUV CAR-1969.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Flavivirus Infections , Flavivirus , Large Neutral Amino Acid-Transporter 1/immunology , Viral Envelope Proteins/immunology , Animals , Europe/epidemiology , Flavivirus/genetics , Flavivirus/immunology , Flavivirus Infections/diagnosis , Flavivirus Infections/immunology , Humans , Protein Binding , Protein Domains , Viral Envelope Proteins/chemistry , West Nile virus/immunology
18.
BMC Vet Res ; 16(1): 203, 2020 Jun 19.
Article in English | MEDLINE | ID: mdl-32560692

ABSTRACT

BACKGROUND: Pathogens including duck-origin avian influenza virus (AIV), duck-origin Newcastle disease virus (NDV) and duck Tembusu virus (DTMUV) posed great harm to ducks and caused great economic losses to the duck industry. In this study, we aim to develop a triplex real-time polymerase chain reaction (PCR) assay to detect these three viruses as early as possible in the suspicious duck flocks. RESULTS: The detection limit of the triplex real-time PCR for AIV, NDV, and DTMUV was 1 × 101 copies/µL, which was at least 10 times higher than the conventional PCR. In addition, the triplex assay was highly specific, and won't cross-react with other duck pathogens. Besides, the intra-day relative standard deviation and inter-day relative standard deviation were lower than 4.44% for these viruses at three different concentrations. Finally, a total of 120 clinical samples were evaluated by the triplex real-time PCR, the conventional PCR and virus isolation, and the positive rates for these three methods were 20.83, 21.67, 19.17%, respectively. Taking virus isolation as the gold standard, the diagnostic specificity and positive predictive value of the three viruses were all above 85%, while the diagnostic sensitivity and negative predictive value of the three viruses were all 100%. CONCLUSION: The developed triplex real-time PCR is fast, specific and sensitive, and is feasible and effective for the simultaneous detection of AIV, NDV, and DTMUV in ducks.


Subject(s)
Flavivirus/isolation & purification , Influenza A virus/isolation & purification , Newcastle disease virus/isolation & purification , Poultry Diseases/virology , Animals , DNA, Viral , Ducks , Flavivirus/genetics , Flavivirus Infections/diagnosis , Flavivirus Infections/veterinary , Flavivirus Infections/virology , Influenza A virus/genetics , Influenza in Birds/diagnosis , Influenza in Birds/virology , Multiplex Polymerase Chain Reaction/methods , Multiplex Polymerase Chain Reaction/veterinary , Newcastle Disease/diagnosis , Newcastle Disease/virology , Newcastle disease virus/genetics , Poultry Diseases/diagnosis , Sensitivity and Specificity
19.
Virus Res ; 286: 198060, 2020 09.
Article in English | MEDLINE | ID: mdl-32561377

ABSTRACT

The burden of Arboviral infections is largely underestimated in Africa, particularly in North-Eastern Nigeria. A total of 200 serum samples were collected from patients exhibiting febrile illness who visited the State Specialist Hospital in Maiduguri for medical attention between March and April 2018. Sera were tested for Flavivirus RNA by a pan-flaviviral primer set using hemi-nested RT PCR. Twenty-six samples were positive for flaviviral RNA and sequence analysis indicated a high number of West Nile virus infections and one case of Zika virus. In-house recombinant NS1-based IgM ELISA indicated 47 % of WNV and 22 % of ZIKV infections. These data were also compared to commercially available assays for West Nile and Zika viruses. Finally, NS1 IgG ELISA was conducted for Dengue, Zika, West Nile and Usutu viruses. For serum samples detected by at least one flavivirus, 945% tested positive by NS1 IgG antibodies, while only 5.5 % of the patients were negative for all. To conclude, there is a high prevalence rate of arbovirus infections in the region, including Zika and Usutu viruses that were not previously detected. Interestingly, the analysis was conducted using in-house tools to allow the implementation of a sustainable surveillance protocol locally.


Subject(s)
Antibodies, Viral/blood , Flavivirus Infections/epidemiology , Flavivirus/classification , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Flavivirus/pathogenicity , Flavivirus Infections/diagnosis , Flavivirus Infections/immunology , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Infant , Infant, Newborn , Male , Middle Aged , Nigeria/epidemiology , Prevalence , Seroepidemiologic Studies , Young Adult
20.
PLoS Negl Trop Dis ; 14(3): e0008156, 2020 03.
Article in English | MEDLINE | ID: mdl-32226028

ABSTRACT

Surveillance of Usutu virus is crucial to prevent future outbreaks both in Europe and in other countries currently naïve to the infection, such as the Americas. This goal remains difficult to achieve, notably because of the lack of large-scale cohort studies and the absence of commercially available diagnostic reagents for USUV. This work started with the first identification of USUV in a blood donor in the Friuli Venezia Giulia (FVG) Region in Northern-Eastern Italy, which is endemic for West Nile virus. Considering that only one IgG ELISA is commercially available, but none for IgM, a novel NS1 antigen based IgG/M ELISA has been developed. This assay tested successfully for the detection of Usutu virus in blood donors with the identification of a second case of transmission and high levels of exposure. Furthermore, two pan-flavivirus antiviral drugs, that we previously characterized to be inhibitors of other flavivirus infectivity, were successfully tested for inhibition of Usutu virus with inhibitory concentrations in the low micromolar range. To conclude, this work identifies North-Eastern Italy as endemic for Usutu virus with implications for the screening of transfusion blood. A novel NS1-based ELISA test has been implemented for the detection of IgM/G that will be of importance as a tool for the diagnosis and surveillance of Usutu virus infection. Finally, Usutu virus is shown to be sensitive to a class of promising pan-flavivirus drugs.


Subject(s)
Antibodies, Viral/blood , Antiviral Agents/pharmacology , Enzyme-Linked Immunosorbent Assay/methods , Flavivirus Infections/diagnosis , Flavivirus/isolation & purification , Serologic Tests/methods , Viral Nonstructural Proteins/immunology , Blood/virology , Blood Donors , Female , Flavivirus/drug effects , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Italy , Microbial Sensitivity Tests , Neutralization Tests/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...